Using CrlS Ammonia Observations To Improve Decision Making on PM_{2.5} Control Policies

M. J. Alvarado¹, N. Heath¹, C. Calkins¹, C. R. Lonsdale¹, K. Cady-Pereira¹, E. H. Fahy¹ and M. Shephard²

¹Atmospheric and Environmental Research (AER) ²Environment and Climate Change Canada

2021 NASA Health and Air Quality Applications Program Review Oct. 12, 2021

NH₃ sources are not well known

Biomass burning

Automobiles (catalytic converters)

- Large urban centers
 - 50% of NH₃ in LA area (Nowak et al., GRL, 2012)

- Fertilizer
- Coal Mining
- Power generation

AGRICULTURE

- Animal waste (temperature dependent)
- Fertilizer application

CrIS can identify NH₃ sources

 CrIS Satellite NH₃ warm season (Apr. – Sept., 2013) average surface map, with corresponding AMoN surface network measurements overlaid.

CrIS Ground-Level NH₃

Schematic Overview of Project Workflow

Latest Updates: Calculation of Final NH₃ **Emissions using** bidirectional flux Run Baseline **CMAQ**

Run Final Optimized CMAQ

Run FEST-C Perturbed CMAQ

Four CMAQ Runs per Iteration

Calculate Weighted **Emissions Scaling Factors**

Run All Other NH₃ Perturbed CMAQ

Calculate Beta for **Each Perturbation**

Update: Final Weighted Emissions Scaling Factors for Bidirectional Input and All Other NH₃ Emissions

Applied to Bidirectional Flux Input

$$E_{t_{bidi}} = E_{a_{bidi}} \left(1 + \frac{\Omega_o - \Omega_a}{\Omega_a} \left(\frac{NH_{3_{FESTC}}}{NH3_{TOTAL}} \right) \beta_{festc} \right) \quad \blacksquare \quad E_{t_{other}} = E_{a_{other}} \left(1 + \frac{\Omega_o - \Omega_a}{\Omega_a} \left(\frac{NH_{3_{OTHER}}}{NH3_{TOTAL}} \right) \beta_{other} \right) \quad \blacksquare \quad E_{t_{other}} = E_{a_{other}} \left(1 + \frac{\Omega_o - \Omega_a}{\Omega_a} \left(\frac{NH_{3_{OTHER}}}{NH3_{TOTAL}} \right) \beta_{other} \right) \quad \blacksquare \quad E_{t_{other}} = E_{a_{other}} \left(1 + \frac{\Omega_o - \Omega_a}{\Omega_a} \left(\frac{NH_{3_{OTHER}}}{NH3_{TOTAL}} \right) \beta_{other} \right) \quad \blacksquare \quad E_{t_{other}} = E_{a_{other}} \left(1 + \frac{\Omega_o - \Omega_a}{\Omega_a} \left(\frac{NH_{3_{OTHER}}}{NH3_{TOTAL}} \right) \beta_{other} \right) \quad \blacksquare \quad E_{t_{other}} = E_{a_{other}} \left(1 + \frac{\Omega_o - \Omega_a}{\Omega_a} \left(\frac{NH_{3_{OTHER}}}{NH3_{TOTAL}} \right) \beta_{other} \right) \quad \blacksquare \quad E_{t_{other}} = E_{a_{other}} \left(1 + \frac{\Omega_o - \Omega_a}{\Omega_a} \left(\frac{NH_{3_{OTHER}}}{NH3_{TOTAL}} \right) \beta_{other} \right) \quad \blacksquare \quad E_{t_{other}} = E_{a_{other}} \left(1 + \frac{\Omega_o - \Omega_a}{\Omega_a} \left(\frac{NH_{3_{OTHER}}}{NH3_{TOTAL}} \right) \beta_{other} \right) \quad \blacksquare \quad E_{t_{other}} = E_{a_{other}} \left(1 + \frac{\Omega_o - \Omega_a}{\Omega_a} \left(\frac{NH_{3_{OTHER}}}{NH3_{TOTAL}} \right) \beta_{other} \right) \quad \blacksquare \quad E_{t_{other}} = E_{a_{other}} \left(1 + \frac{\Omega_o - \Omega_a}{\Omega_a} \left(\frac{NH_{3_{OTHER}}}{NH3_{TOTAL}} \right) \beta_{other} \right) \quad \blacksquare \quad E_{t_{other}} = E_{a_{other}} \left(1 + \frac{\Omega_o - \Omega_a}{\Omega_a} \left(\frac{NH_{3_{OTHER}}}{NH3_{TOTAL}} \right) \beta_{other} \right) \quad \blacksquare \quad E_{t_{other}} = E_{a_{other}} \left(1 + \frac{\Omega_o - \Omega_a}{\Omega_a} \left(\frac{NH_{3_{OTHER}}}{NH3_{TOTAL}} \right) \beta_{other} \right) \quad \blacksquare \quad E_{t_{other}} = E_{a_{other}} \left(1 + \frac{\Omega_o - \Omega_a}{\Omega_a} \left(\frac{NH_{3_{OTHER}}}{NH3_{TOTAL}} \right) \beta_{other} \right) \quad \blacksquare \quad E_{t_{other}} = E_{a_{other}} \left(1 + \frac{\Omega_o - \Omega_a}{\Omega_a} \left(\frac{NH_{3_{OTHER}}}{NH3_{TOTAL}} \right) \beta_{other} \right) \quad \blacksquare \quad E_{t_{other}} = E_{a_{other}} \left(1 + \frac{\Omega_o - \Omega_a}{\Omega_a} \left(\frac{NH_{3_{OTHER}}}{NH3_{TOTAL}} \right) \beta_{other} \right) \quad \blacksquare \quad E_{t_{other}} = E_{a_{other}} \left(1 + \frac{\Omega_o - \Omega_a}{\Omega_a} \left(\frac{NH_{3_{OTHER}}}{NH3_{TOTAL}} \right) \beta_{other} \right) \quad \blacksquare \quad E_{t_{other}} = E_{a_{other}} \left(1 + \frac{\Omega_o - \Omega_a}{\Omega_a} \left(\frac{NH_{3_{OTHER}}}{NH3_{TOTAL}} \right) \beta_{other} \right) \quad \blacksquare \quad E_{t_{other}} = E_{a_{other}} \left(1 + \frac{\Omega_o - \Omega_a}{\Omega_a} \left(\frac{NH_{3_{OTHER}}}{NH3_{TOTAL}} \right) \beta_{other} \right) \quad \blacksquare \quad E_{t_{other}} = E_{a_{other}} \left(\frac{NH_{3_{OTHER}$$

Limit: 0 – 5

Applied to All Other NH₃ Input

$$E_{t_{other}} = E_{a_{other}} \left(1 + \frac{\Omega_o - \Omega_a}{\Omega_a} \left(\frac{NH_{3OTHER}}{NH3_{TOTAL}} \right) \beta_{other} \right)$$

Limit: 0 – 5

Pre-inversion NH₃ (June 2015, 12US2)

CrIS Monthly-Averaged Surface Conc (ppb)

Difference (CMAQ minus CrIS)

Post-inversion NH₃ (June 2015, 12US2)

CrIS Monthly-Averaged Surface Conc (ppb)

CMAQ Sfc-Inv Monthly-Averaged Surface Conc (ppb)

Difference (CMAQ minus CrIS)

12 km Run Comparison with AMoN

CMAQ BASE Comparison with AMON

12 km Run Comparison with AMoN

CMAQ Iteration 1 – Surface Inversion Comparison with AMoN

36 km Run Comparison with AMoN

Current Work

 Working with ECCC to get better prior NH₃ emissions over Canada

 Working with EPA to get 12US1 simulations for April 2018

Finalizing all code for distribution runs

Project ARL

- Start-of-Project ARL = 3 (11-16-2018)
- Goal ARL = 7
- Current ARL = 5 (8-16-2021)

Summary

- This work will provide improved NH₃ emission inventories to air quality forecasters, managers, and other stakeholders.
- Application of the inversion using bidirectional NH₃ flux for the first time for June 2015 proved successful. The process improved comparisons with CrIS and an independent dataset, AMoN.
- Our ongoing work will make the approach applicable at 36 km across NA and provide EPA with emissions files for testing in their existing decision-making activities.

